Application of S-Transform on Hyper kurtosis based Modified Duo Histogram Equalized DIC images for Pre-cancer Detection

نویسندگان

  • Sabyasachi Mukhopadhyay
  • Soham Mandal
  • Sawon Pratiher
  • Ritwik Barman
  • M. Venkatesh
  • Nirmalya Ghosh
  • Prasanta K. Panigrahi
چکیده

Our proposed hyper kurtosis based histogram equalized DIC images enhances the contrast by preserving the brightness. The evolution and development of precancerous activity among tissues are studied through S-transform (ST). The significant variations of amplitude spectra can be observed due to increased medium roughness from normal tissue were observed in time-frequency domain. The randomness and inhomogeneity of the tissue structures among human normal and different grades of DIC tissues is recognized by ST based timefrequency analysis. This study offers a simpler and better way to recognize the substantial changes among different stages of DIC tissues, which are reflected by spatial information containing within the inhomogeneity structures of different types of tissue. Keywords—Histogram Equalization; S-transform; DIC images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A comparative study between proposed Hyper Kurtosis based Modified Duo-Histogram Equalization (HKMDHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE) for Contrast Enhancement Purpose of Low Contrast Human Brain CT scan images

In this paper, a comparative study between proposed hyper kurtosis based modified duo-histogram equalization (HKMDHE) algorithm and contrast limited adaptive histogram enhancement (CLAHE) has been presented for the implementation of contrast enhancement and brightness preservation of low contrast human brain CT scan images. In HKMDHE algorithm, contrast enhancement is done on the hyper-kurtosis...

متن کامل

Color scene transform between images using Rosenfeld-Kak histogram matching method

In digital color imaging, it is of interest to transform the color scene of an image to the other. Some attempts have been done in this case using, for example, lαβ color space, principal component analysis and recently histogram rescaling method. In this research, a novel method is proposed based on the Resenfeld and Kak histogram matching algorithm. It is suggested that to transform the color...

متن کامل

Improvement of Breast Cancer Detection Using Non-subsampled Contourlet Transform and Super-Resolution Technique in Mammographic Images

Introduction Breast cancer is one of the most life-threatening conditions among women. Early detection of this disease is the only way to reduce the associated mortality rate. Mammography is a standard method for the early detection of breast cancer. Today, considering the importance of breast cancer detection, computer-aided detection techniques have been employed to increase the quality of ma...

متن کامل

A Hybrid Method for Mammography Mass Detection Based on Wavelet Transform

Introduction:  Breast  cancer  is  a  leading  cause  of  death  among  females  throughout  the  world.  Currently,  radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD)  can play an important role in helping radiologists perform more accurate diagnoses.   Material and Methods: Using our hybrid method, the background and the pectoral muscle...

متن کامل

Improving the RX Anomaly Detection Algorithm for Hyperspectral Images using FFT

Anomaly Detection (AD) has recently become an important application of target detection in hyperspectral images. The Reed-Xialoi (RX) is the most widely used AD algorithm that suffers from “small sample size” problem. The best solution for this problem is to use Dimensionality Reduction (DR) techniques as a pre-processing step for RX detector. Using this method not only improves the detection p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1505.00192  شماره 

صفحات  -

تاریخ انتشار 2015